UCR Fall2003 CS179E
Malcolm A. Mumme
Rev 0.2

CS179E project proposal: the Ephemeral programming language.

Background and motivation

Massively parallel processing

I wish to address the issue of programming massively parallel processors with simple interconnections and very small memory (a few bytes) per processor. This category of processors has met little commercial success due to a number of factors. No such processors in the MIMD category (Inmos Transputer) are currently produced. A few special purpose processors in the SIMD category have met some specialized success a in few applications (NCR GAPP for image processing). These SIMD architectures have not entered general use for a variety of reasons, partially due to unfamiliarity of the parallel programming model and limited language support. Support for the category of MIMD mesh connected processors is desirable, since these parallel processors offer the greatest potential for flexible construction and scalability and a computational model which correctly reflects asymptotic physical performance. Likewise, support for processors with very small memory per processor is desirable since it has the greatest potential total performance for parallel problems of a given size. Other than assembly language, there is currently no known language which supports MIMD mesh connected processors with very small memory.

Few high-level programming languages for massively parallel processing have met with much success. Most parallel systems today are programmed with sequential model languages with parallelism handled by additional calls to parallel or distributed programming libraries which programmers must learn. These libraries tend to be system- dependent, and are only a slight remedy to the slowness of progress in parallel systems research and development.

An additional problem faced by parallel small-memory processor systems is the problem of code loading and distribution. Typically, extant programming languages implicitly delegate the task of loading and placement of code to the underlying run-time environment. Often, it is assumed that all code will be available on every processor. Small-memory processors cannot contain entire applications on each processor, and are unable to support sophisticated local run-time environments. The lack of explicit treatment of code loading by programming languages virtually guarantees the failure of massively parallel small-memory machines.

Active message languages

See (SIGPLAN NOTICES, volume 38, number 6, June 2003, page 6) “Totally Message Driven Computation” by Thomas W. Christopher for a brief introduction to Active Message programming.

Active message languages treat messages and places explicitly. Execution activity is triggered by the arrival of an active message at a place, where passive messages may also be waiting to be processed, and can be processed and destroyed by the activity triggered by the arrival of an active message. The activity to be triggered is designated by the message itself, hence the designation active messages. This is similar to the message concept in object oriented languages, where the message selects one of the target object's methods to execute. The difference here is that in an active message language, there are no objects (although there may be passive messages); all methods are designated completely by the message.

This proposal describes an active message language where the messages not only designate the method to be executed, but contain the actual method code implementing the method to be executed. This feature provides for explicit code distribution in a manner that is not necessarily machine-dependent, addressing the programmability of small-memory MIMD processor systems.

The Architectural assumptions

In the Ephemeral language, the term place will denote a location specific in both space and time. Places are quite ephemeral, and can only be involved in a small amount of computation. The term port denotes a way to send a message from one place to another. For the purposes of Ephemeral coding, the entire computational universe comprises a collection of places connected by a collection of ports. Activities occur in places, activated by an active message from an incoming port, and may send messages via the outgoing ports of that place.

The assumed parallel architecture is a collection of small-memory processors connected by many one-way links. From a physical point of view, a place corresponds to a specific processor at a specific time (possibly a clock cycle). A port corresponds to a specific link between processors at a specific time. Messages must have a small maximum size, since they must be transferred in minimal time over a single link. The detail of I/O is assumed to be handled by some special “peripheral” links which are connected to I/O devices or to “normal” computers.

For feasibility reasons, the primary parallel target for this project should be a synchronous one-dimensional mesh (two-way pipeline) of small-memory processors (It might be reasonable to consider more complex architectures if time permits). Each processor would have a “to” and “from” link to its two nearest neighbors, and the processors at the ends would have “I/O” links. Physically, the “mesh” of processors would look like this:

computer
link A
processor A
link B
processor B
link C
etc.
link n
processor n
link X
other

...

For programming purposes, the places and ports associated with processors A and B of this mesh would look like this:

titles:
processor A

processor B

cycle 1
place A1

place B1

cycle 2
place A2

place B2

cycle 3
place A3

place B3

This illustrates the space-time geometry of the places and ports realizable with the one-dimensional mesh architecture. Each place has three incoming ports, one from the left, one from the right and one from the previous place having the same processor. Each place likewise has three outgoing ports.

If one of the incoming ports delivers an active message to a place, the method code in the active message is executed in the place, possibly resulting in messages sent on the outgoing ports from that place. The execution of a program begins with the arrival of an active message(s) at place(s) A, produced by the “normal” computer. Additional passive messages containing data may also be delivered to place(s) A. The active messages contain code that sends out additional active messages, propagating code to all places where needed. Having thus infected the entire mesh, the program may process data arriving in passive messages and may send result messages toward the computer.

An actual processor implementing this architecture should examine each input link for an active message each execution cycle. If one active message is found, its code is executed in that cycle and may produce result messages. If no active message is found, no code is executed and no messages are sent. If multiple active messages are found, the result may be considered beyond the scope of this project. The actual construction of such a processor is also beyond the scope of this project. Executions will be carried out on a software simulator.

The Ephemeral language

Type system

All data resides in the parameters of messages and is typed.

There are three categories of data types, and one other type category:

Bit strings

These contain the ordinary data on which programs operate.

Code

These parameters are actually bit strings which are sized by the compiler to contain action code specified in the program.

port references

These act like “pointers” to ports. And are used to send a message via the corresponding port. Implementation of this feature for the 1D mesh may be beyond the scope of this project.

Places

Types corresponding to places are used to indicate what message data is expected on each incoming port of a place, and which incoming message will be executed.

Syntax

I attempt to use C++-like syntax wherever possible.

program ::= declaration*

declaration ::= action-declaration

| bit-declaration

| code-declaration

| place-declaration

| allocation-declaration

action-declaration ::= “action” name “(“ name “)” “{” action-body “}” “;”

action-body ::= (message | allocation-declaration)*

message ::= port-expression “(” expressions “)” “;”

expressions ::= expression | expression “,” expressions

expression ::= port-expression | a-expression | code-expression

| a-expression “?” expression “:” expression // conditional

port-expression ::= name “.” name | name // placename.portname or port formal

a-expression ::= literal | name | “(” a-expression “)”

| a-expression binary-op a-expression

| unary-op a-expression

// take account of operator precedence though

binary-op ::= “|” | “^” | “&” | “==” | “!=” | “+” | “-” | “*” | “/” | “%”

// in approximate precedence order

unary-op ::= “-” | “~” | “!” // unary operators have highest precedence

literal ::= (“0”|“1”|“2”|“3”|“4”|“5”|“6”|“7”|“8”|“9”)* | (“0b” | “1b”) (“0” | “1”)*

// non-negative decimal, or binary

code-expression :: = name // action name or code formal

allocation-declaration ::= name name “(” expressions “)” “;”

// the first name is a placename

bit-declaration ::= “bit” name “[” a-expression “]” “;”

code-declaration ::= “code” name “{” name* “}” “;”

place-declaration ::= “place” name “{” portdecl* “}” “;”

portdecl ::= name “(” formals “)” “;”

formals ::= formal | formal “,” formals

formal ::= name name // typename name

Explanation

A program is a set of declarations where exactly one must be a main action declaration.

An action declaration is like a procedure declaration in C++, although more limited.

action actionname (placetype) { declarations body };

defines the actionname as an action with executable code generated from the body.

A placetype is used to indicate the type of place where this action may be executed, and therefore what message data it may access.

The declarations may contain place allocations, and possibly other types of declarations. Implementation of either of these kinds of declaration may be beyond the scope of this project. A place allocation creates (actually allocates from available resources) a new place, to which messages may be sent.

placetype newplacename [(allocation-specification)];

The optional allocation-specification allows the allocation of a specific place relative to the current place. For example the allocation-specification (22,-5) indicates the place that occurs 22 cycles after and 5 processors to the left of the current place.

The body comprises a collection of messages to be sent and ports to receive them.

port(expression , ...); ...

The expression's types must match the types in the port declarations of the relevant place type declaration.

Expressions of a port type may be a name of a formal port parameter from the place in which this action executes, or:

newplacename .portname

where newplacename refers to one of the new places allocated in the current action.

For each special architecture supported by the compiler, additional port names may be predefined. For example, the 1D mesh architecture may provide port names LEFT and RIGHT, respectively indicating the right incoming port of the processor to the left, and the left incoming port of the processor to the right.

Expressions of code types may be a name of a formal code parameter from the place in which this action executes, or may be the name of an action, in which case the action must have been listed in the declaration for the relevant code type.

Expressions of bit string type may refer to a formal parameter of bit string type, or may involve an arithmetic operation between other bit string expressions. Due to the short duration of an action, only very limited computations may be performed in an expression. We limit each expression to a single operation and also impose a limit on the total number of operations present in an action.

Expressions of any type may include a single selection operator:

(condition ? trueresult : falseresult) , which selects one of the results based on the condition.

The destination port for a message may be omitted; in that case, a new place of an appropriate new type will be allocated and the message will be sent to that new place. Implementation of this feature for the 1D mesh may be beyond the scope of this project.

The expression's types must match the types in the port declarations of the relevant place type declaration.

A bit string type is declared like an array of booleans in C:

bit typename[n];

A code type ultimately indicates a bit string large enough to hold code for actions designated by the programmer. It is declared similarly to a C union.

code codetypename { actionname , ... codetypename ... };

The compiler should guarantee that enough space will be reserved for this type to contain the code for any one of the actions named or any one of the other code types named.

Types for places define the ports and expected parameters, as well as which message is active.

place placetype {

portname(typename formalname , ...);

...

activeportname;

};

This declares a new place-type, defining the names of its incoming ports, and the types of their formal message parameters. It also designates one special port as expecting an active message. The first formal parameter of the given port must be of a code type. The corresponding actual must contain the method code to be executed in places of this type.

A port-reference type is indicated in a formal parameter list as: placetype.portname , which by reference to the placetype and portname indicates the type of message that may be sent via the port.

A port reference value must not be copied in an action. Within an action, only one mention may be made of a particular port reference value. An exception may be made in cases where conditional expressions are involved. This helps to ensure that the program will not attempt to use a port for more than one message.

The proposal

We (OK, it's just me for now) propose to pursue two or more (as time permits) of the following options. The first two to be pursued are the Single processor option and the One dimension parallel processor option. Others are optional depending on progress with the first two.

Single processor with large-memory implementation

This would be a primary implementation for ease of testing and Ephemeral coding practice. It would also include implementation of features such as port references and creation of new places. It could be implemented by translation to C++, with code types implemented as C++ function pointers.

One dimensional parallel processor implementation with small memory and simulator

This would require instruction set design and implementation of a simulator as well as translation to actual code. Useful testing would also require writing parallel processing code in Ephemeral. Of particular research interest is the relation between maximum message size and programming difficulty.

Internet implementation with large memory processors

This would be an attempt to use Ephemeral for distributed processing instead of tightly coupled massively parallel processing. The Internet would be used as the interconnection between processors. This would leverage the (then) existing large-memory processor implementation.

One dimensional parallel processor implementation with large memory

This would be like the Internet implementation except with a restricted topology, allowing the use of fixed TCP connections throughout an entire run.

Two or three dimensional or hypercube parallel processor implementation with small memory and simulator

This is the real goal of this project, and leverages the (then) existing one-dimensional implementation. The instruction set and code generator would have to be adjusted. The simulation would be re-written for the new architecture and more advanced parallel processing test code would have to be written.

Real-time single processor implementation

This would be a modification of the single-processor implementation where the allocation-specifications will use a standard unit such as seconds, instead of cycles. The implementation would attempt to cause messages to be delivered on time according to the allocation-specifications.

10/4/03
Ephemeral Programming Language
Page 10 of 10

